SAMPLE PAPER NZ@A

Level 1 Mathematics and Statistics
 1.3: Investigate relationships between tables, equations or graphs

Credits: Four

Check that you have completed ALL parts of the box at the top of this page.
You should answer ALL parts of ALL questions in this booklet.
If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages $2-12$ in the correct order and that none of these pages is blank.
YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME.

For Assessor's use only

Achievement Criteria

You are advised to spend 60 minutes answering the questions in this booklet.

QUESTION ONE

(a) Sarah starts making a pattern of houses using toothpicks as shown in the diagram below.

Design 1

Design 2

Design 3

Design 4

She begins a table for the number of toothpicks she uses for the number of houses in the pattern.

(i) Give the rule for calculating the number of toothpicks T that Sarah will need to make the ' n th' design.

$$
4 n+1=T
$$

\qquad
\qquad
\qquad
(ii) On the grid below, sketch a graph showing the number of toothpicks required for up to the 10 th design.

(iii) Give the rule for the total number of toothpicks that Sarah would need if she was to continue following the pattern and complete ' n ' designs.

Use this rule to find the total number of toothpicks needed to complete the first 12 designs using Sarah's pattern.

(b) Kiri decides to make a different pattern involving separate houses. She begins with the same design as Sarah, as shown in the diagram below.

Each new shape adds one more toothpick to each side of the previous design, as shown in the diagram below.

Student did not realise that these shapes were separate initially but ends up with the correct formula.

(i) Give the rule for the number of toothpicks required to make the ' n th' house in Kiri's pattern.

(ii) Use this rule 10 find the number of toothpicks needed for the 6th house in the pattern.

(iii) Describe how the graph for the number of toothpicks Kiri used for n houses relates to Sarah's graph.

QUESTION TWO

(a) George and Gina are running a sausage sizzle to raise funds for their school.

They have bought 10 kg of sausages to sell.
George draws a graph of the profit they hope to make against the number of kilograms of sausages sold.

(i) Give the equation for the profit made in terms of the number of kilograms of sausages sold.
\qquad
\qquad
(ii) Find the cost of a 2 kg bag of sausages.

\qquad
\qquad
(iii) How much profit do they hope to make on each of the 2 kg bags of sausages and how is this shown on the graph?

(iv) Gina is able to get the same number of sausages at 10% discount.

If she sells the sausages at the same price, explain in detail how this will affect the graph.

(v) George graphs the actual profit they made from their sale of sausages.

Identify the changes between this graph and George's original graph shown on page 5, AND explain in detail why these changes may have occurred.

QUESTION THREE
(a) For the graph below give:
(i) the intercepts:

(iii) The parabola is moved 3 units to the right and 5 units up.

Give the equation of the parabola in simplified form its new position AND give the y intercept.

$$
\begin{aligned}
y & =-(x-3+5)(x-3-1)+5 \\
& =-(x-1)(x-4) \\
y \text {-interest } & =-(-1)(-4)+5
\end{aligned}
$$

(b) A support for a children's bungy jump is modelled by the function $y=-x(x-5)$ where y is the height of the support in metres above the ground and x is the distance from the left hand side of the support.
(i) Sketch the graph of the function for the support on the grid below.

(ii) What is the maximum height of the support?

(iii) A horizontal support beam is put across the support at a height of 4 m above the ground.

How long is the support beam?

\qquad
\qquad

SAMPLE PAPER NZ®A

Level 1 Mathematics and Statistics
 1.3: Investigate relationships between tables, equations or graphs

Credits: Four

Check that you have completed ALL parts of the box at the top of this page.
You should answer ALL parts of ALL questions in this booklet.
If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages $2-12$ in the correct order and that none of these pages is blank.
YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME.

You are advised to spend 60 minutes answering the questions in this booklet.

QUESTION ONE

(a) Sarah starts making a pattern of houses using toothpicks as shown in the diagram below.

Design 1

Design 2

Design 3

Design 4

She begins a table for the number of toothpicks she uses for the number of houses in the pattern.

Design (n)	Number of toothpicks used in the design (T)
1	5
2	9
3	13
4	17
5	21
6	$25+1$
$n+h$	

Totals.

(i) Give the rule for calculating the number of toothpicks T that Sarah will need to make the ' n th' design.

$$
T=4 n+1
$$

\qquad
\qquad
(ii) On the grid below, sketch a graph showing the number of toothpicks required for up to the 10th design.

Should not be mad
Stops at the right place.

Students need to take notice of words in bold.
(iii) Give the rule for the total number of toothpicks that Sarah would need if she was to continue following the pattern and complete ' n ' designs.

Use this rule to find the total number of toothpicks needed to complete the first 12 designs using Sarah's pattern.

Finite difference used to find the formula for the totals.

$$
T_{T}=2 n^{2}+3 n
$$

$$
T_{T}=2(12)^{2}+3 \times 12
$$

$$
=288+36
$$

$$
=324 \text { tooth picks needed. }
$$

(b) Kiri decides to make a different pattern involving separate houses. She begins with the same design as Sarah, as shown in the diagram below.

Each new shape adds one more toothpick to each side of the previous design, as shown in the diagram below.

(i) Give the rule for the number of toothpicks required to make the ' n th' house in Kiri's pattern.

These two questions go together to give one grade.
\qquad
(ii) Use this rule to find the number of toothpicks needed for the 6 th house in the pattern.

(iii) Describe how the graph for the number of toothpicks Kiri used for n houses relates to

Sarah's graph.

This question is looking for a
 comparison of the two graphs.

every 5 toothpicks Kiri
H would require 5 times more than the
number of the house.

\qquad

QUESTION TWO

(a) George and Gina are running a sausage sizzle to raise funds for their school.

They have bought 10 kg of sausages to sell.
George draws a graph of the profit they hope to make against the number of kilograms of sausages sold.

(i) Give the equation for the profit made in terms of the number of kilograms of sausages sold.

$$
P=20 s-50
$$

(ii) Find the cost of a 2 kg bag of sausages.
$\left.\begin{array}{rl|}R & =20 \times 2-50\end{array} \quad \begin{array}{l}\text { Uses the y intercept to } \\ \text { see that } 10 \mathrm{~kg} \text { costs } \$ 50 .\end{array}\right]$

The parts (i), (ii), and (iii) form one scaffolded question: the grade is on the next page.
(iii) How much profit do they hope to make on each of the 2 kg bags of sausages and how is this shown on the graph?

(iv) Gina is able to get the same number of sausages at 10% discount.

If she sells the sausages at the same price, explain in detail how this will affect the graph.

$$
50 \times 0.9=45
$$

The graph will have same gradient as the
previous graph of $\$ 20$ per kg but the

$$
y \text {-intercept will be different, the previous }
$$

10 kg of sausages therefore

$$
\text { the } y \text {-intercept being }
$$

$$
\text { being } \$ 50 \text {, as it cost them } \$ 50 \text { to buy }
$$

$$
10 \mathrm{~kg} \text { of sausages, but when after } 10 \%
$$

discount, they only had to pay sis for
(v) George graphs the actual profit they made from their sale of sausages.

Identify the changes between this graph and George's original graph shown on page 5 , AND explain in detail why these changes may have occurred.
The grap two graphs are the same till 6 kgs but from after 6 kg have has changes. When the
origional graph carries on with the gradient
of 20 , this graph now chat the gradient of 10. Which means after the
sale of 6 kg of sausages, saugages
could have not been sold so they
didn't sell, so they could have lowered the price in hall, therefore increasing the demand as it is cheaper now, and therefor achieving to sell all the 10 kg of sausages.

QUESTION THREE

(a) For the graph below give:
(i) the intercepts:

(ii) the function:

(iii) The parabola is moved 3 units to the right and 5 units up.

Give the equation of the parabola in simplified form its new position AND give the y intercept.

$$
y=-x^{2}+5 x+1
$$

(b) A support for a children's bungy jump is modelled by the function $y=-x(x-5)$ where y is the height of the support in metres above the ground and x is the distance from the left hand side of the support.
(i) Sketch the graph of the function for the support on the grid below.

(ii) What is the maximum height of the support?
$y=-2.5(2.5-5)$
$y=-2.5(-2.5)$
$y=6.25 \mathrm{~m}$.
(iii) A horizontal support beam is put across the support at a height of 4 m above the ground.

How long is the support beam?

4	$=-x(x-5)$
$-x^{2}+5 x-4$	
$(-x+1)(x-4)$	
x	$=1,1$

An algebraic solution was expected rather than merely reading off the graph.

